APR 02 2009 1 SEQUENCE LISTING STPAD? <110> Protain Ľťd. Shaaltiel, Yoseph Baum, Gideon Hashmueli, Sharon Lewkowicz, Ayala Bartfeld, Daniel <120> PRODUCTION OF HIGH MANNOSE PROTEINS IN PLANT CULTURE <130> 30570 <150> IL 155588 <151> 2003-04-27 <150> PCT/IL2004/000181 <151> 2004-02-24 <160> 14 <170> PatentIn version 3.5 <210> 1 <211> 22 <212> PRT <213> Artificial sequence <220> <223> ER signal peptide <400> 1 Met Lys Thr Asn Leu Phe Leu Phe Leu Ile Phe Ser Leu Leu Ser 1 5 10 15 Leu Ser Ser Ala Glu Phe 20 <210> 2 <211> 7 <212> PRT <213> Artificial sequence <220> <223> Vacuolar targeting signal from Tobacco chitinase A <400> 2 Asp Leu Leu Val Asp Thr Met 1 5 <210> 3 <211> 21 <212> DNA <213> Artificial sequence <220> <223> Single strand DNA oligonucleotide <400> 3 cagaattcgc ccgcccctgc a <210> 4

<211> 22 <212> DNA <213> Artificial sequence

ì

<400> 4 ctcagatctt ggcgatgcca ca 22 <210> 5 <211> 19 <212> DNA <213> Artificial sequence <220> <223> Single strand DNA oligonucleotide <400> 5 ctcagaagac cagagggct 19 <210> 6 <211> 17 <212> DNA <213> Artificial sequence <220> <223> Single strand DNA oligonucleotide <400> 6 caaagcggcc atcgtgc 17 <210> 7 <211> 1491 <212> DNA <213> Homo sapiens <400> 7 gcccgcccct gcatccctaa aagcttcggc tacagctcgg tggtgtgtgt ctgcaatgcc 60 acatactgtg acteetttga ecceegaee ttteetgeee ttggtaeett eageegetat 120 gagagtacac gcagtgggcg acggatggag ctgagtatgg ggcccatcca ggctaatcac 180 acgggcacag gcctgctact gaccctgcag ccagaacaga agttccagaa agtgaaggga 240 tttggagggg ccatgacaga tgctgctgct ctcaacatcc ttgccctgtc accccctqcc 300 caaaatttgc tacttaaatc gtacttctct gaagaaggaa tcggatataa catcatccgg 360 gtacccatgg ccagctgtga cttctccatc cgcacctaca cctatgcaga cacccctgat 420 gatttccagt tgcacaactt cagcctccca gaggaagata ccaagctcaa gatacccctg 480 attcaccgag ccctgcagtt ggcccagcgt cccgtttcac tccttgccag cccctggaca 540 tcacccactt ggctcaagac caatggagcg gtgaatggga aggggtcact caagggacag 600 cccggagaca tctaccacca gacctgggcc agatactttg tgaagttcct ggatgcctat 660 gctgagcaca agttacagtt ctgggcagtg acagctgaaa atgagccttc tgctgggctg 720 ttgagtggat accccttcca gtgcctgggc ttcacccctg aacatcagcg agacttcatt 780 gcccgtgacc taggtcctac cctcgccaac agtactcacc acaatgtccg cctactcatg 840 ctggatgacc aacgettget getgeeceae tgggeaaagg tggtaetgae agaeceagaa 900 gcagctaaat atgttcatgg cattgctgta cattggtacc tggactttct ggctccagcc 960 aaagccaccc taggggagac acaccgcctg ttccccaaca ccatgctctt tgcctcagag 1020

<220>

<223> Single strand DNA oligonucleotide

aagaacgacc tggacgcagt ggcactgatg catcccgatg gctctgctgt tgtggtcgtg ctaaaccgct cctctaagga tgtgcctctt accatcaagg atcctgctgt gggcttcctg gagacaatct cacctggcta ctccattcac acctacctgt ggcatcgcca g <210> <211> <212> PRT <213> Homo sapiens <400> Ala Arg Pro Cys Ile Pro Lys Ser Phe Gly Tyr Ser Ser Val Val Cys Val Cys Asn Ala Thr Tyr Cys Asp Ser Phe Asp Pro Pro Thr Phe Pro Ala Leu Gly Thr Phe Ser Arg Tyr Glu Ser Thr Arg Ser Gly Arg Arg Met Glu Leu Ser Met Gly Pro Ile Gln Ala Asn His Thr Gly Thr Gly Leu Leu Thr Leu Gln Pro Glu Gln Lys Phe Gln Lys Val Lys Gly Phe Gly Gly Ala Met Thr Asp Ala Ala Ala Leu Asn Ile Leu Ala Leu Ser Pro Pro Ala Gln Asn Leu Leu Leu Lys Ser Tyr Phe Ser Glu Glu Gly Ile Gly Tyr Asn Ile Ile Arg Val Pro Met Ala Ser Cys Asp Phe Ser Ile Arg Thr Tyr Thr Tyr Ala Asp Thr Pro Asp Asp Phe Gln Leu His Asn Phe Ser Leu Pro Glu Glu Asp Thr Lys Leu Lys Ile Pro Leu Ile His Arg Ala Leu Gln Leu Ala Gln Arg Pro Val Ser Leu Leu Ala Ser Pro Trp Thr Ser Pro Thr Trp Leu Lys Thr Asn Gly Ala Val Asn

gcctgtgtgg gctccaagtt ctgggagcag agtgtgcggc taggctcctg ggatcgaggg

atgcagtaca gccacagcat catcacgaac ctcctgtacc atgtggtcgg ctggaccgac

tggaaccttg ccctgaaccc cgaaggagga cccaattggg tgcgtaactt tgtcgacagt

cccatcattg tagacatcac caaggacacg ttttacaaac agcccatgtt ctaccacctt

ggccacttca gcaagttcat tcctgagggc tcccagagag tggggctggt tgccagtcag

Gly	Lys	Gly 195		Leu	Lys	Gly	Gln 200	Pro	Gly	Asp	Ile	Туг 205		Gln	Thr
Trp	Ala 210		Tyr	Phe	Val	Lys 215	Phe	Leu	Asp	Ala	Tyr 220	Ala	Glu	His	Lys
Leu 225		Phe	Trp	Ala	Val 230	Thr	Ala	Glu	Asn	Glu 235	Pro	Ser	Ala	Gly	Leu 240
Leu	Ser	Gly	Tyr	Pro 245	Phe	Gln	Cys	Leu	Gly 250	Phe	Thr	Pro	Glu	His 255	Gln
Arg	Asp	Phe	Ile 260	Ala	Arg	Asp	Leu	Gly 265	Pro	Thr	Leu	Ala	Asn 270	Ser	Thr
His	His	Asn 275	Val	Arg	Leu	Leu	Met 280	Leu	Asp	Asp	Gln	Arg 285	Leu	Leu	Leu
Pro	His 290	Trp	Ala	Lys	Val	Val 295	Leu	Thr	Asp	Pro	Glu 300	Ala	Ala	Lys	Tyr
Val 305	His	Gly	Ile	Ala	Val 310	His	Trp	Tyr	Leu	Asp 315	Phe	Leu	Ala	Pro	Ala 320
Lys	Ala	Thr	Leu	Gly 325	Glu	Thr	His	Arg	Leu 330	Phe	Pro	Asn	Thr	Met 335	Leu
Phe	Ala	Ser	Glu 340	Ala	Cys	Val	Gly	Ser 345	Lys	Phe	Trp	Glu	Gln 350	Ser	Val
		355		Trp			360					365			
	370			Tyr		375					380				
385				Gly	390					395					400
				Asp 405					410					415	
			420	Gly				425					430		
		435		Val			440					445			
	450			Asp		455					460			-	
Ser	Lys	Asp	Val	Pro	Leu	Thr	Ile	Lys	Asp	Pro	Ala	Val	Gly	Phe	Leu

• .

465 470 475 480 Glu Thr Ile Ser Pro Gly Tyr Ser Ile His Thr Tyr Leu Trp His Arg 485 490 495 Gln 497 <210> 9 <211> 338 <212> DNA <213> Cauliflower mosaic virus <400> 9 ttttcacaaa gggtaatatc gggaaacctc ctcggattcc attgcccagc tatctgtcac 60 ttcatcgaaa ggacagtaga aaaggaaggt ggctcctaca aatgccatca ttgcgataaa 120 ggaaaggcta tcgttcaaga tgcctctacc gacagtggtc ccaaagatgg acccccaccc 180 acgaggaaca tcgtggaaaa agaagacgtt ccaaccacgt cttcaaagca agtggattga 240 tgtgatatet ceaetgaegt aagggatgae geaeaateee actateette geaagaeeet 300 teetetatat aaggaagtte attteatttg gagaggae 338 <210> 10 <211> 66 <212> DNA <213> Artificial sequence <220> <223> Nucleic acid sequence encoding the ER signal peptide <400> 10 atgaagacta atctttttct ctttctcatc ttttcacttc tcctatcatt atcctcggcc 60 gaattc 66 <210> 11 <211> 21 <212> DNA <213> Artificial sequence <220> <223> Nucleic acid sequence encoding the vacuolar targeting sequence <400> 11 gatcttttag tcgatactat g 21 <210> 12 <211> 167 <212> DNA <213> Artificial sequence <220> <223> Nucleic acid sequence of the Agrobacterium tumefaciens terminator <220> <221> misc feature <222> (162)..(162) <223> n is a, c, g, or t <400> 12 taatttcatg atctgttttg ttgtattccc ttgcaatgca gggcctaggg ctatgaataa 60

5

.

agttaatgtg tgaatgtgtg aatgtgtgat tgtgacctga agggatcacg actataatcg 120 tttataataa acaaagactt tgtcccaaaa acccccccc cngcaga 167 <210> 13 <211> 2186 <212> DNA <213> Artificial sequence <220> <223> nucleic acid sequence encoding high mannose human glucocerebrosidase (GCD) <220> <221> misc_feature <222> (2181)..(2181) <223> n is a, c, g, or t <400> 13 ttttcacaaa gggtaatatc gggaaacctc ctcggattcc attgcccagc tatctgtcac 60 ttcatcgaaa ggacagtaga aaaggaaggt ggctcctaca aatgccatca ttgcgataaa 120 ggaaaggcta tcgttcaaga tgcctctacc gacagtggtc ccaaagatgg acccccaccc 180 acgaggaaca tcgtggaaaa agaagacgtt ccaaccacgt cttcaaagca agtggattga 240 tgtgatatet ceaetgaegt aagggatgae geaeaateee actateette geaagaeeet 300 tcctctatat aaggaagttc atttcatttg gagaggacag gcttcttgag atccttcaac 360 aattaccaac aacaacaaac aacaaacaac attacaatta ctatttacaa ttacagtcga 420 gggatccaag gagatataac aatgaagact aatctttttc tctttctcat cttttcactt 480 ctcctatcat tatcctcggc cgaattcgcc cgcccctgca tccctaaaag cttcggctac 540 ageteggtgg tgtgtgtetg caatgeeaca taetgtgaet eetttgaeee eeegaeettt 600 cctgcccttg gtaccttcag ccgctatgag agtacacgca gtgggggacg gatggagctg 660 agtatggggc ccatccaggc taatcacacg ggcacaggcc tgctactgac cctgcagcca 720 gaacagaagt tecagaaagt gaagggattt ggaggggeea tgacagatge tgetgetete 780 aacatcettg ceetgteace eeetgeecaa aatttgetae ttaaategta ettetetgaa 840 gaaggaatcg gatataacat catccgggta cccatggcca gctgtgactt ctccatccgc 900 acctacacct atgcagacac ccctgatgat ttccagttgc acaacttcag cctcccagag 960 gaagatacca ageteaagat acceetgatt caeegageee tgeagttgge ceagegteee 1020 gtttcactcc ttgccagccc ctggacatca cccacttggc tcaagaccaa tggagcggtg 1080 aatgggaagg ggtcactcaa gggacagccc ggagacatct accaccagac ctgggccaga 1140 tactttgtga agttcctgga tgcctatgct gagcacaagt tacagttctg ggcagtgaca 1200 gctgaaaatg agccttctgc tgggctgttg agtggatacc ccttccagtg cctgggcttc 1260 acccctgaac atcagcgaga cttcattgcc cgtgacctag gtcctaccct cgccaacagt 1320 actcaccaca atgtccgcct actcatgctg gatgaccaac gcttgctgct gccccactgg 1380 gcaaaggtgg tactgacaga cccagaagca gctaaatatg ttcatggcat tgctgtacat 1440 tggtacctgg actttctggc tccagccaaa gccaccctag gggagacaca ccgcctgttc 1500

cccaacacca tgctctttgc ctcagaggcc tgtgtgggct ccaagttctg ggagcagagt 1560 gtgcggctag gctcctggga tcgagggatg cagtacagcc acagcatcat cacgaacctc 1620 ctgtaccatg tggtcggctg gaccgactgg aaccttgccc tgaaccccga aggaggaccc 1680 aattgggtgc gtaactttgt cgacagtccc atcattgtag acatcaccaa ggacacgttt 1740 tacaaacage ceatgtteta ceacettgge caetteagea agtteattee tgagggetee 1800 cagagagtgg ggctggttgc cagtcagaag aacgacctgg acgcagtggc actgatgcat 1860 cccgatgget etgetgttgt ggtegtgeta aacegeteet etaaggatgt geetettaee 1920 atcaaggatc ctgctgtggg cttcctggag acaatctcac ctggctactc cattcacacc 1980 tacctgtggc atcgccaaga tcttttagtc gatactatgt aatttcatga tctgttttgt 2040 tgtattccct tgcaatgcag ggcctagggc tatgaataaa gttaatgtgt gaatgtgtga 2100 atgtgtgatt gtgacctgaa gggatcacga ctataatcgt ttataataaa caaagacttt 2160 gtcccaaaaa ccccccccc ngcaga 2186

<210> 14 <211> 526 <212> PRT <213> Artificial sequence <220> <223> High mannose human glucocerebrosidase (GCD) <400> 14 Met Lys Thr Asn Leu Phe Leu Phe Leu Ile Phe Ser Leu Leu Leu Ser 1 5 10 15 Leu Ser Ser Ala Glu Phe Ala Arg Pro Cys Ile Pro Lys Ser Phe Gly 20 25 Tyr Ser Ser Val Val Cys Val Cys Asn Ala Thr Tyr Cys Asp Ser Phe 35 40 45 Asp Pro Pro Thr Phe Pro Ala Leu Gly Thr Phe Ser Arg Tyr Glu Ser 50 55 60 Thr Arg Ser Gly Arg Arg Met Glu Leu Ser Met Gly Pro Ile Gln Ala 65 70 75 80 Asn His Thr Gly Thr Gly Leu Leu Leu Thr Leu Gln Pro Glu Gln Lys 85 90 Phe Gln Lys Val Lys Gly Phe Gly Gly Ala Met Thr Asp Ala Ala Ala 100 105 110 Leu Asn Ile Leu Ala Leu Ser Pro Pro Ala Gln Asn Leu Leu Lys 115 120 125 Ser Tyr Phe Ser Glu Glu Gly Ile Gly Tyr Asn Ile Ile Arg Val Pro 130 135 140

Met 145	Ala	Ser	Cys	Asp	Phe 150	Ser	Ile	Arg	Thr	Tyr 155		Tyr	Ala	Asp	Thr 160
Pro	Asp	Asp	Phe	Gln 165	Leu	His	Asn	Phe	Ser 170		Pro	Glu	Glu	Asp 175	
Lys	Leu	Lys	Ile 180	Pro	Leu	Ile	His	Arg 185	Ala	Leu	Gln	Leu	Ala 190	Gln	Arg
Pro	Val	Ser 195	Leu	Leu	Ala	Ser	Pro 200	Trp	Thr	Ser	Pro	Thr 205	Trp	Leu	Lys
Thr	Asn 210	Gly	Ala	Val	Asn	Gly 215	Lys	Gly	Ser	Leu	Lys 220	Gly	Gln	Pro	Gly
Asp 225	Ile	Tyr	His	Gln	Thr 230	Trp	Ala	Arg	Tyr	Phe 235	Val	Lys	Phe	Leu	Asp 240
Ala	Tyr	Ala	Glu	His 245	Lys	Leu	Gln	Phe	Trp 250	Ala	Val	Thr	Ala	Glu 255	Asn
Glu	Pro	Ser	Ala 260	Gly	Leu	Leu	Ser	Gly 265	Tyr	Pro	Phe	Gln	Cys 270	Leu	Gly
Phe	Thr	Pro 275	Glu	His	Gln	Arg	Asp 280	Phe	Ile	Ala	Arg	Asp 285	Leu	Gly	Pro
Thr	Leu 290	Ala	Asn	Ser	Thr	His 295	His	Asn	Val	Arg	Leu 300	Leu	Met	Leu	Asp
Asp 305	Gln	Arg	Leu	Leu	Leu 310	Pro	His	Trp	Ala	Lys 315	Val	Val	Leu	Thr	Asp 320
Pro	Glu	Ala	Ala	Lys 325	Tyr	Val	His	Gly	Ile 330	Ala	Val	His	Trp	Tyr 335	Leu
Asp	Phe	Leu	Ala 340	Pro	Ala	Lys	Ala	Thr 345	Leu	Gly	Glu	Thr	His 350	Arg	Leu
Phe	Pro	Asn 355	Thr	Met	Leu	Phe	Ala 360	Ser	Glu	Ala	Cys	Val 365	Gly	Ser	Lys
Phe	Trp 370	Glu	Gln	Ser		Arg 375	Leu	Gly	Ser	Trp	Asp 380	Arg	Gly	Met	Gln
Tyr 385	Ser	His	Ser	Ile	Ile 390	Thr	Asn	Leu	Leu	Tyr 395	His	Val	Val	Gly	Trp 400
Thr	Asp	Trp		Leu 405	Ala	Leu	Asn	Pro	Glu 410	Gly	Gly	Pro	Asn	Trp 415	Val
Arg	Asn	Phe	Val 420	Asp	Ser	Pro		Ile 425	Val	Asp	Ile		Lys 430	Asp	Thr

•

· .

8

_ ____

Phe	Tyr	Lys 435	Gln	Pro	Met	Phe	Tyr 440	His	Leu	Gly	His	Phe 445	Ser	Lys	Phe
Ile	Pro 450	Glu	Gly	Ser	Gln	Arg 455	Val	Gly	Leu	Val	Ala 460	Ser	Gln	Lys	Asn
Asp 465	Leu	Asp	Ala	Val	Ala 470	Leu	Met	His	Pro	Asp 475	Gly	Ser	Ala	Val	Val 480
Val	Val	Leu	Asn	Arg 485	Ser	Ser	Lys	Asp	Val 490	Pro	Leu	Thr	Ile	Lys 495	Asp
Pro	Ala	Val	Gly 500	Phe	Leu	Glu	Thr	Ile 505	Ser	Pro	Gly	Tyr	Ser 510	Ile	His
Thr	Tyr	Leu 515	Trp	His	Arg	Gln	Asp 520	Leu	Leu	Val	Asp	Thr 525	Met		

• ٠

٠ ų, .

.